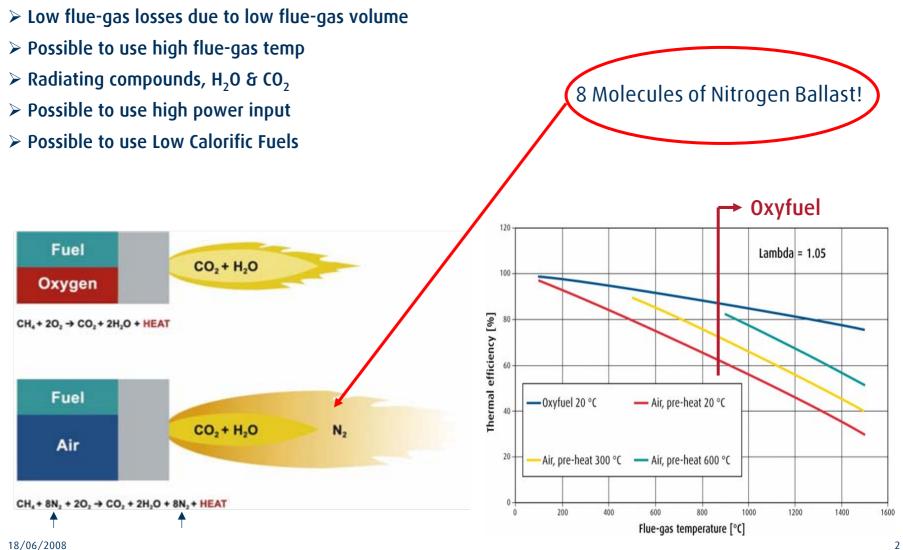


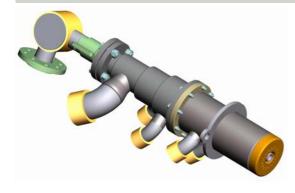
Big and Diffuse or Small and Sharp State-of-the-Art Oxyfuel Based Melting and Heating

Presentation at SCANMET III


LeadIng.

THE LINDE GROUP

Joachim von Schéele June 10, 2008


Oxyfuel Solutions Energy Efficiency

MORE

Hi JET

- UP TO 5 MW BURNER WITH INNOVATIVE MIXED SWIRL FLAME TECHNOLOGY.
- 'DEEP' CARBON INJECTION INTO THE LIQUID STEEL.
- OXYGEN AND NATURAL GAS CONSUMPTION SAVINGS DUE TO THE SHUT-OFF OF THE OXYGEN AND NATURAL GAS DURING INJECTION MODE

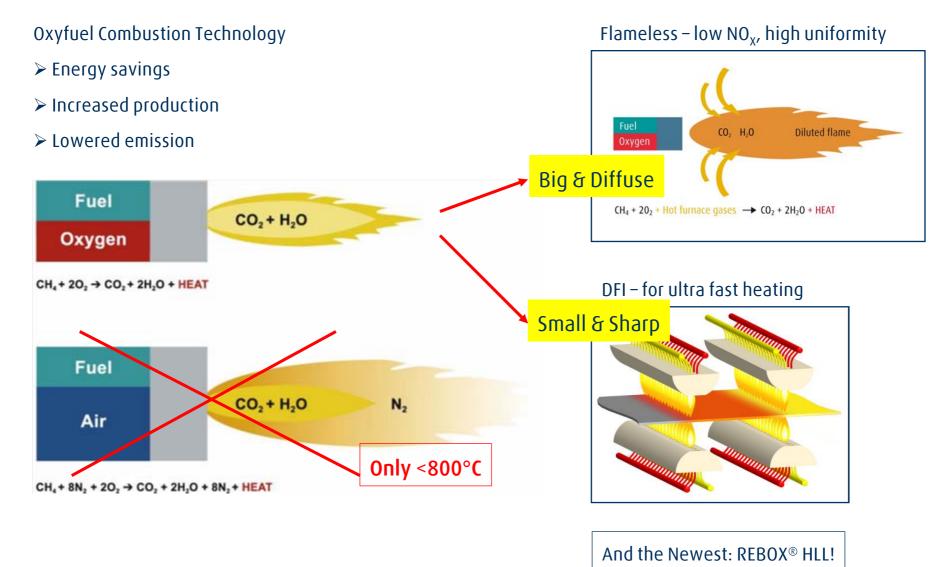
OXYGENJET

• UP TO 5 MW BURNER WITH INNOVATIVE MIXED SWIRL FLAME TECHNOLOGY.

• SUPERSONIC/COHERENT OXYGEN INJECTION.

• OXYGEN AND NATURAL GAS CONSUMPTION SAVINGS DUE TO THE SHUT-OFF OF THE OXYGEN AND NATURAL GAS DURING INJECTION MODE

THE LINDE GROUP


- UP TO 5 MW BURNER
 WITH INNOVATIVE MIXED SWIRL FLAME TECHNOLOGY.
- CARBON/LIME/DOLO-LIME INJECTION.
- OXYGEN AND NATURAL GAS CONSUMPTION SAVINGS DUE TO THE SHUT-OFF OF THE OXYGEN AND NATURAL GAS DURING INJECTION MODE

3

REBOX® Oxyfuel Solutions Combustion Technologies

Flameless Oxyfuel Uniform Heating and Reduced NO_x

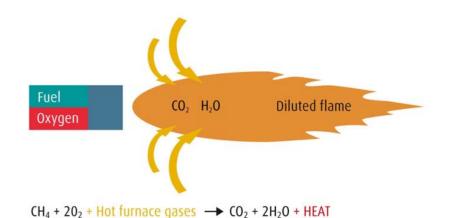
THE LINDE GROUP

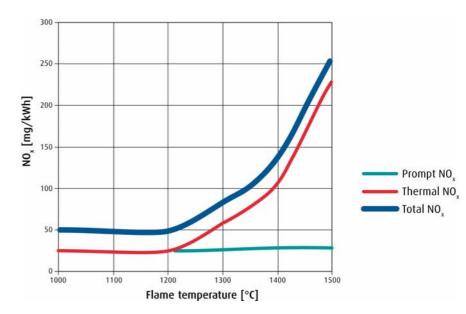
Combustion extended in time and space

- Volume combustion
- Spontaneous reaction above self ignition temp. (>750°C from safety point of view)

Dilution of flame reduces flame temperature

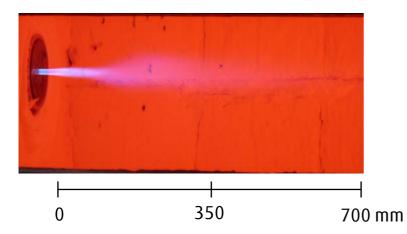
 Flame temperature is even with no peaks which minimizes thermal NO_x

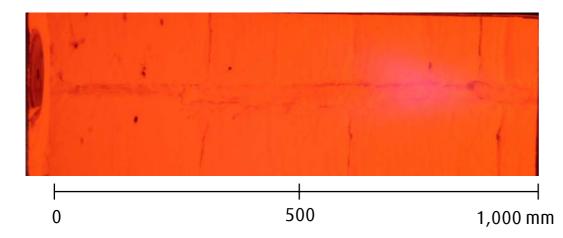

Minimized temperature difference between flame and furnace walls


Uniform heating of object

Dilution results in good stirring of the highly radiating CO₂ and H₂O gases in furnace

- More even furnace temperature
- Convection transfer to object


Compact and powerful burner technology

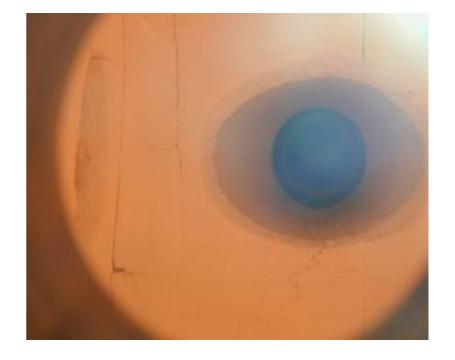


Flameless Oxyfuel

Oxyfuel Staged Combustion with 5% Primary Oxygen

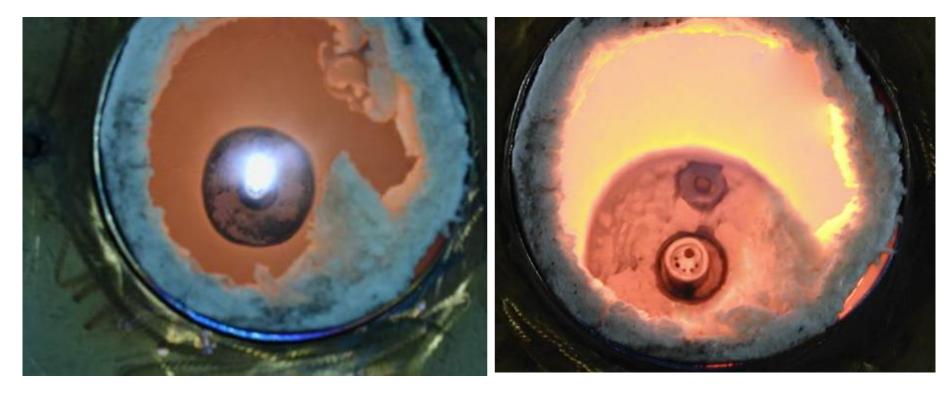
Flameless Oxyfuel

Flameless Oxyfuel Ultra Low NO_x Levels

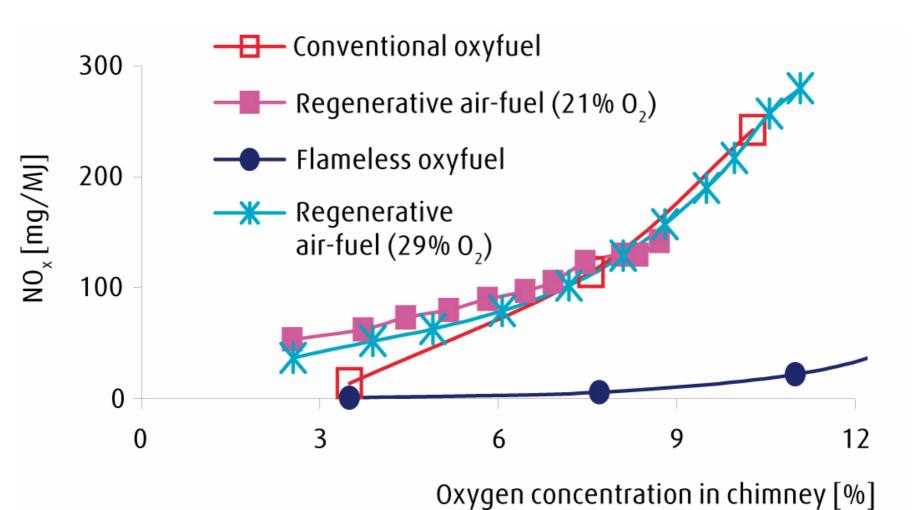


Standard Oxyfuel Staged Oxyfuel Flameless Oxyfuel

NO_x mg/MJ ~100-200 70-100 <25


Dilution reduces flame temperature and provides effective stirring of the highly radiating CO₂ and H₂O gases

Flameless Oxyfuel has Lower Flame Temperature, but Same Energy Content



Flame mode

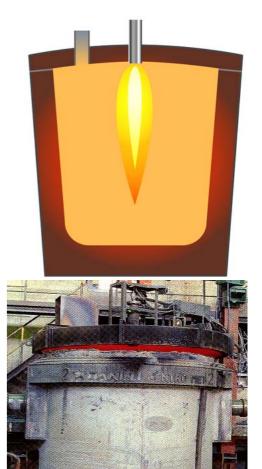
Flameless mode

Flameless Oxyfuel Ultra Low NO_x Despite Ingress Air

Benefits of Oxyfuel in Vessel Preheating

Benefits from higher heating temperature of a steel-making vessel:

- No need to have too high tapping temperature from the EAF/BOF
- Shorter heating cycles for less number of vessels needed
- Only 75-80% flue gases due to less fuel and no nitrogen in combustion smaller flue-gas system
- 50-55% lower fuel consumption compared to cold air fuel system


Simple, compact and low weight installation as compared to air-fuel system with recuperator or regenerative solution

Additional Benefits from Flameless oxyfuel:

- Further improved heat distribution in the vessel
- Ultra low NO_x emissions

18/06/2008

 Extended refractory lifetime due to a more even temperature distribution in vessel

THE LINDE GROUP

Vessel Preheating with Flameless Oxyfuel

Vessel preheating using oxyfuel is common technology – using Flameless Oxyfuel is a Milestone in Preheating!

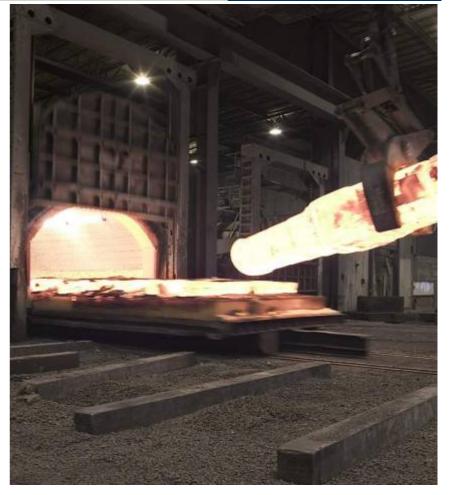
- Increased temperature uniformity in ladle
- Decreased fuel consumption
- ➢ Lower NO_x formation
- Increased heating capacity

Cases of <u>flameless</u> oxyfuel

Sandvik	90 t converters	1.4 MW
Outokumpu	90 t ladles	1.5 MW
Acerinox	90 t ladles	2.0 MW
OVAKO	90 t ladles	1.4 MW
Kanthal (1500°C)	5 t ladles	0.2 MW
Outokumpu	90 t converters	2.5 MW

Ladle preheating at ACERINOX

REBOX® Oxyfuel Solutions General Results from Installations



<u>Fuel and CO₂ savings</u> Up to 50% reduction

<u>Low NO_x emission</u> Levels continuously below 70 mg/MJ

Less Scaling Up to 0.4%-units reduction

Increased production capacity/flexibility Up to 50% higher throughput

Car bottom furnace at SCANA Steel, all equipped with flameless oxyfuel

Lower Fuel Consumption in a Reheating Furnace

		Air fuel	AF w recu	REBOX®
Enthalpy in steel	kWh/t	200	200	200
Transmission losses	kWh/t	10	10	10
Flue-gas enthalpy	kWh/t	290	140	50
Flue-gas temperature	°C ℃	1200	850 450	1200
Air preheating Thermal efficiency	С %	20 42	450 70	20 80
Energy need	∞ kWh/t	42 500	350	260 <u> </u>
Energy need Oxygen production	GJ/t kWh/t	1,8	1.26	0.936 25

*after recuperation

Flameless Oxyfuel burners, Water-cooled & Ceramic

Ultra low NO_x & Uniform heating

- -High flue gas circulation and lower flame temperature
- Dual mode burner standard and flameless
- Separated jets Supersonic
- Powerful: 0.5-5 MW
 - -Oil, coal or gaseous fuels

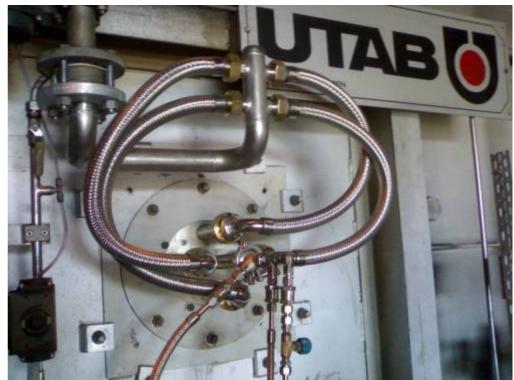
Easy retrofit & Compact rugged design

- -Quick release fittings
- -Simple dismounting
- -Integrated UV and pilot burner
- -Burner diameter 105 mm (w-c), 300 mm (ceramic)
- -Weight 10-20 kg (w-c)

THE LINDE GROUP

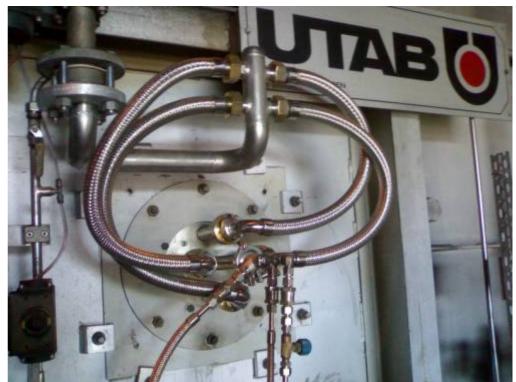
REBOX® Oxyfuel Solutions Retrofit Replacing Air-fuel

4 MW air-fuel installed, before REBOX®


2.5 MW Flameless Oxyfuel Installed₁₅

REBOX® Oxyfuel Solutions Typical Installation

Flameless Oxyfuel Burner



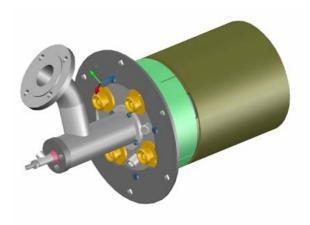
REBOX® Oxyfuel Solutions Typical Installation

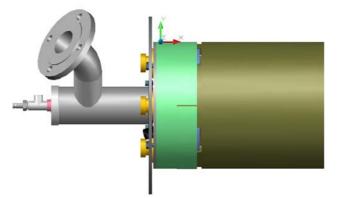
Flameless Oxyfuel Burner

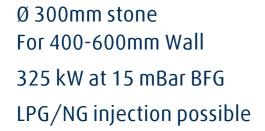
REBOX® Oxyfuel Solutions Use of a Low Calorific Fuel

For Coke Oven Gas, Blast Furnace Top Gas, BOF Gas, and other in-house gases. Used individually or in different combinations.

Combusting Low Calorific in-house gases with oxygen provides the flame temperature needed in reheating and annealing operations.

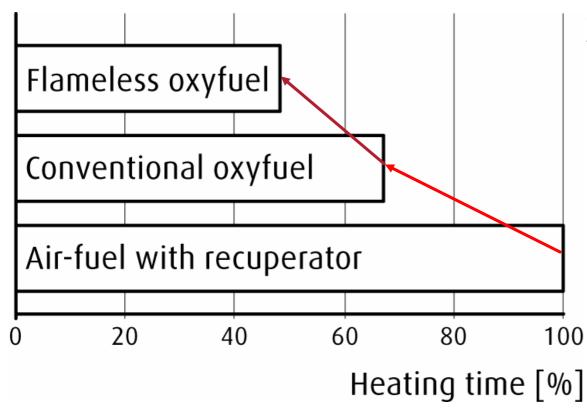

With oxygen a fuel of 3.3 MJ/Nm³ (0.9 kWh/Nm³) is "upgraded" to be like a 7.7 MJ/Nm³ (2.1 kWh/Nm³) fuel combusted with air (i.e., roughly like conventional air-fuel combustion)




REBOX® Oxyfuel Solutions Use of a Low Calorific Fuel

Burner design – Flameless Oxyfuel using a Low Calorific Fuel

- Separate Jet Flameless technology
- Ceramic self-cooled design
- >Dual-fuel and mixed fuel capability
- Flame and Flameless mode for cold and hot furnace operation



REBOX® Oxyfuel Solutions Flameless vs. Conventional

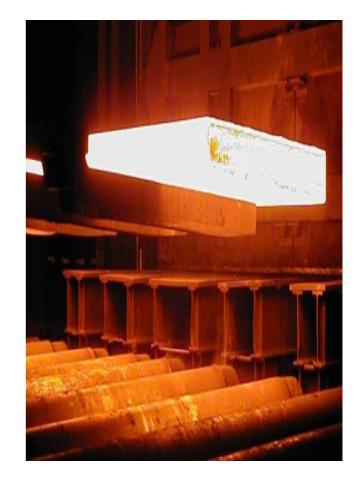
Rotary hearth furnace at ArcelorMittal Shelby, all equipped with flameless oxyfuel

Total Heating Time at Ovako Hofors Works using different combustion technologies

REBOX® Oxyfuel Solutions Example of Installation

Walking Beam Furnace at Outokumpu, Degerfors. Conversion into all flameless oxyfuel operation.

Linde Turn-key delivery in 2003


Combustion system with flameless burners, furnace upgrade, new flue gas system, flow train, control system

Furnace data

Dimensions: 27 m length, 5 m wide Fuel: LPG Stainless steel: all grades, 1,550 mm wide 140-300 mm thickness

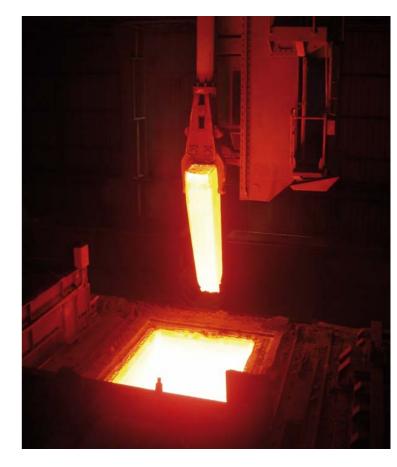
Performance Guarantee

35% more through put 30% fuel savings (down to 0.97 GJ/ton cold charged) NO_x emission <70mg/MJ (350 mg/m3) Revamped in 25 days

REBOX® Oxyfuel Solutions Example of Installation

13 Soaking pit furnaces at Ascométal, Fos-sur-Mer and Les Dunes. Conversion into all flameless oxyfuel.

Linde Turn-key delivery in 2005-2008


Combustion system with flameless burners, furnace upgrade, new flue gas system, flow train, control system

Furnace data

Dimensions: 80-120 ton/furnace Fuel: Natural gas Bearing steel

Performance

50% more heating capacity 40% fuel savings (down to 1.15 GJ/ton cold charged) NO_x emission reduced by 40% Scale formation reduced with 3 ton/1000 ton heated (0.3%)

18/06/2008

REBOX[®] Oxyfuel Solutions Example of Installation

Rotary hearth furnace at ArcelorMittal Shelby. Conversion into all flameless oxyfuel.

Linde Turn-key delivery in 2007

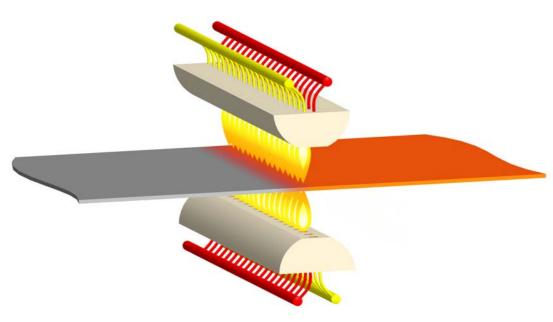
Combustion system with flameless burners, furnace upgrade, new flue gas system, flow train, control system

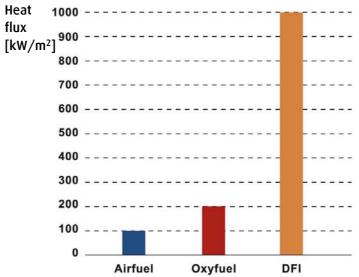
Furnace data

Dimension: 15 m diameter Billet diameter: 76-222 mm Fuel: natural Gas Carbon steel:

Performance Guarantee

>33% more through put 50% fuel savings (from enrichment; 65% from air-fuel) NO_x emission <70 mg/MJ




Direct Flame Impingement (DFI) Technology

Firing Directly Onto a Moving Material

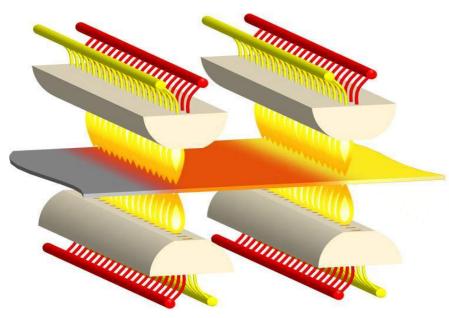
DFI Oxyfuel the local heat flux could be as high as 800-1000 kW/m²

DFI Oxyfuel in a Stainless Strip Annealing & Pickling Line at Outokumpu

Outokumpu Nyby Works, Sweden DFI Oxyfuel installation in 2002 by Linde

4 MW installed power
120 oxyfuel flames, four burner rows
2 meter long unit at entry of strip annealing furnace

Furnace throughput capacity increased 50%, from 23 to 35 t/h



DFI Oxyfuel in Metal Coating Lines ThyssenKrupp Steel at Finnentrop and Bruckhausen

3 m of recuperative zone removed to fit DFI Compact DFI unit: L 2.8 x W 2.8 x H 1.2 meter 12 days line stop

DFI Oxyfuel in Metal Coating Lines ThyssenKrupp Steel at Finnentrop and Bruckhausen

5 MW power input

80-90% thermal efficiency Totally 120 oxyfuel flames, in 4 burner rows Option for 2 more burner rows (+ 2 MW)

REBOX® DFI Oxyfuel Example of Installation

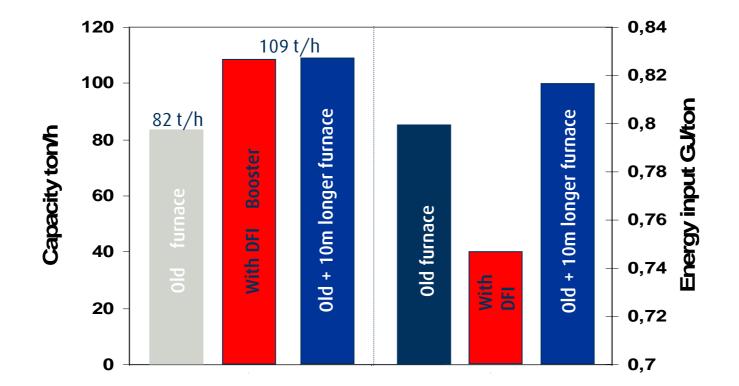
Galvanizing lines at ThyssenKrupp Steel, Finnentrop and Bruckhausen. DFI boosting.

Linde Turn-key deliveries in 2006 and 2007

Combustion system with Direct Flame Impingement in 4 Burner Row Units, flow train, control system

Furnace data

Dimensions: 2.8 m long Fuel: Natural Gas Carbon steel strip: all grades, 1,550 mm wide


Performance Guarantee

30% more through put 10% fuel savings Revamped in 4 days/furnace

"DFI is 3 solutions in one – more capacity, clean strip and no extension of line"

The alternative to DFI Oxyfuel at ThyssenKrupp Steel at Finnentrop was a 10-m extension of the furnace, but that would not have provided decreased fuel consumption and elimination of the cleaning section.

Direct Flame Impingement (DFI) Technology

Here DFI for ΔT 200°C at max production rate (ton/h), but can be used for much higher ΔT , for example 500°C

DFI oxyfuel could be used not only for strip heating relating to annealing and coating of different kinds.

- > Agglomeration for example, ignition of sinter beds and agglomeration of briquettes
- Iron-making
- > To change material properties
- Press hardening
- Edge-heating
- Skid-marks removal
- ≻…?

A technology that has 10 times the heat transfer than the one in use is waiting to be fully exploited!

Summary:

In the steel industry, flameless oxyfuel should be applied for heating in all types of furnaces and vessels, with temperatures above 800-900°C. Flameless oxyfuel leads to great benefits in terms of lower fuel consumption, decreased CO_2 and $NO_{X'}$, and increased production capacity. The benefits of flameless oxyfuel have already been demonstrated in 30 installations. In general air-fuel is only viable below 800°C.

There are only two exceptions where flameless oxyfuel should not be used:

- Conventional oxyfuel in Electric Arc Furnaces
- DFI Oxyfuel applications

In addition to strip processing lines, where DFI Oxyfuel has shown great success, where else in the iron and steel making process chains could DFI Oxyfuel be applied?